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Convective motions in a spherical shell 
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We compute the axisymmetric convective motions that exist in a spherical shell 
heated from below with inner to outer radius ratio equal to 0.5. The boundaries are 
stress-free and gravity is directly proportional to radius. Accurate solutions at large 
Rayleigh numbers (0(106)) are made feasible by a spectral method that employs 
diagonal-mode truncation. By examining the stability of axisymmetric motions we 
conclude that the preferred form of convection varies dramatically according to the 
value of the Rayleigh number. While axisymmetric motions with different patterns 
may exist for modestly nonlinear convection, only a single motion persists at 
sufficiently large values of the Rayleigh number. This circulation is symmetric about 
the equator and has two meridional cells with rising motion at the poles. Instability 
of this single axisymmetric motion determines that the preferred pattern of three- 
dimensional convection has one azimuthal wave. 

1. Introduction 
Nonlinear thermal convection in spherical shells has been studied extensively in 

the pest few years. Busse (1975) and Busse & Riahi (1982) have considered the 
problem of bifurcation from the conduction state due to spherically symmetric 
gravitation and heating. They show how the degeneracy of the linear problem 
(Chandrasekhar 1961) is reduced due to nonlinear selection. Thus instead of the 22+ 1 
solutions of the linearized equations where 1 is the degree of the spherical harmonic, 
there are only about 1 nonlinearly admissible solutions. The preferred convective 
motion among these solutions can then be determined by linear stability methods. 
Such analyses by Busse and Busse & Riahi have led to results valid for values of the 
Rayleigh number Ra close to the eigenvalue of the linear problem that corresponds 
to 1. In particular, the behaviour near the critical Rayleigh number Ru,, is completely 
predicted, provided that the eigenvalue corresponding to 2 is a simple eigenvalue and 
is sufficiently smaller in value than the nearest eigenvalue corresponding to a 
different 2. These analyses are applicable to any spherical symmetry-breaking 
bifurcation. Riahi, Geiger & Busse (1982) give results for thermal convection in shells 
of different size and mode of heating. 

Because of its geophysical applications, axisymmetric convective motions due to 
different styles of heating in spherical shells of various sizes, including the sphere, 
have been computed for values of Ra about ten times Ru,, (Hsui, Turcotte & Torrence 
1972; Young 1974; Weir 1976, 1978; Zebib, Schubert & Straus 1980; Schubert & 
Zebib 1980; Zebib et a2. 1983). Owing to the high degree of spherical symmetry in 
the mathematical models there are, a priori, two sets of possible nonlinear solutions. 
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One exhibits hemispherical symmetry and is composed of spherical harmonics of 
even degree 1. The other contains both odd and even degree spherical harmonics 
and is not hemispherically symmetric. If the critical motion corresponds to an 
even 1,  the only steady, axisymmetric solutions are a pair of equatorially symmetric 
motions with opposite senses of rotation. Except in the special case when the linear 
operator is self-adjoint, this pair of motions represents a transcritical bifurcation 
(Busse 1975; Busse & Riahi 1982). If the critical motion is an odd I, convection sets 
in as a supercritical bifurcation, with the subsequent axisymmetric steady state 
dominated by an odd number of cells equal to the critical I .  A pair of hemispherical 
solutions also exists for values of Ra greater than the smallest linear eigenvalue 
corresponding to an even 1 ;  the motion is dominated by a number of cells equal to 
this even 1 (Zebib et al. 1983). The steady solutions with odd numbers of cells cease 
to exist after some modest supercritical Ra (Zebib et ul. 1983). 

The case of a shell with inner to outer radius ratio 7 equal to 0.5 is important in 
modelling mantle convection in the Earth (Schubert 1979). When such a shell, with 
stress-free boundaries and gravitational acceleration proportional to radial position, 
is heated from below, the first three eigenvalues (in increasing order) of the linear 
problem are 978.5 for E = 3, 1095.7 for I = 2, and 1109.6 for I = 4. The three-cell 
motion begins a t  Ru = 978.5 and ceases to exist at Ra z 3300 (Ra is based on the 
thickness of the shell, the temperature difference across it, and the acceleration of 
gravity at the outer radius). The hemispherical motions first occur at Ra about 1095.7 
as 1 = 2 nonlinear circulations (the motion with downwelling at the poles is 
subcritical). As Ra increases they quickly evolve into I = 4 circulations. The 
hemispherical flows are unstable to axisymmetric perturbations including odd-l 
contributions (Zebib et al. 1983). 

In this paper we focus on the nature of convection (in the shell described above) 
at more geophysically relevant values of Ra (about 1000Ra,,). A complete investi- 
gation of deep mantle convection should include three-dimensional effects as well as 
realistic rheologies (temperature-, pressure- and stress-dependent viscosity). Such a 
task must be entirely dependent on extensive numerical computations. Here we 
present a fundamental study of high-Rayleigh-number axisymmetric convection for 
Rayleigh numbers reaching to geophysically relevant values. The stability properties 
of these axisymmetric solutions determine the preferred pattern of convection 
including the form that fully three-dimensional motions are likely to take. The 
spectral method with full-mode truncation used by Zebib et al. (1980) is adequate 
for computation at Ra up to about lORa,,. Here we employ diagonal-mode 
truncation (cf. Denny & Clever 1973), which enables us to compute accurate 
axisymmetric hemispherical convection at Ra as high as lOORa,,. 

The major conclusion of the present work is that the only high-Ra axisymmetric 
convection in the shell is an 1 = 2 hemispherical motion with fluid rising at the pole. 
This indeed is a surprising result, since the two-cell circulations that set in at about 
Ra,, (I = 2) do not exist beyond Ru slightly greater than Ra,, ( I  = 4). However, we 
find that with increasing Ra the two-cell motions reappear. Other equatorially 
symmetric motions become unstable to general axisymmetric disturbances at  
relatively low Ra, and eventually cease to exist. Linear stability analysis indicates 
that the I = 2 motion which persists to high Ru is stable to three-dimensional 
perturbations with zonal wavenumbers greater than one, but is unstable to disturb- 
ances with a single azimuthal wave. Thus, although other three-dimensional 
motions which do not branch from axisymmetric steady states are possible, the 
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three-dimensional motion with a pair of meridional cells and one zonal wave, with 
polar upwelling, seems to be the preferred form of convection at high Ra. This result 
contrasts with the finding (Zebib et al. 1980) that the preferred form of convection 
near Ra,, is a three-dimensional motion with three meridional cells and three 
azimuthal waves (which agrees with Busse & Riahi’s (1982) conclusion that the 
motion is indeed three-dimensional at the onset of convection). 

We look closely at the disappearance of 1 = 2 convection at  slightly supercritical 
Ra and its reappearance at higher Ra. The competition between the 1 = 2 and the 
1 = 4 motions near the onset of convection due to the proximity of their respective 
Racr results in a complex configuration of stable and unstable branches of these 
solutions. A bifurcation diagram for hemispherical convection consistent with all the 
computational evidence is presented. 

2. Mathematical model 
The motion is referred to spherical coordinates (r, 8, q5). With the assumption of 

an infinite Prandtl number and a Boussinesq fluid, the incompressible Navie-tokes 
and energy equations can be reduced to (Chandrasekhar 1961) 

V 4 ( F )  = (1-q)RaL28, 

where the operator L2 is defined by 

a, (sin 8 a, 8) a&, 8 LZ@ = - 
sin 8 sin2 0 ’ 

and v is given in terms of the poloidal scalar @(r, t )  according to 

Here length, velocity and temperature are dimensionless with respect to d = R, - R,, 
K / d  and AT = T, - T, respectively, where R,, R, and T,, T, are the inner and outer radii 
and temperatures, and K is the thermal diffusivity. 8 ( r ,  t )  is the temperature deviation 
from the basic conduction profile 8,(r) 

The Rayleigh number Ra is defined by 

ug, AT d9 
Ra = f 

VK 

where a is the coefficient of thermal expansion, g2 is the value of the gravitional 
acceleration (which is assumed to increase linearly with r )  at R,, and v is the kinematic 
viscosity. 
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The boundary conditions corresponding to isothermal, stress-free inner and outer 
surfaces are 

8 = v, = a:, (m,) = 0 at r l ,  r2. (2.8) 

Because the operators Q and L2 are singular at 8 = 0, R, representations of 8 and 
@ are sought in terms of non-singular Legendre functions of 8. 

3. Spectral method 
Solutions of (2.1) and (2.2) are constructed by assuming spectral representation for 

8 ( r ,  t )  and @(r,  t )  which satisfy the homogeneous boundary conditions (2.8). In the 
full-mode truncation, these representations for axisymmetric convection are 

where 4 are normalized Legendre polynomials and N,, No are the truncation 
parameters. The radial functionsflj( r )  are constructed such that the linear momentum 
equation (2.1) is satisfied term by term (Zebib et al. 1980). 

With the diagonal-mode truncation the spectral representation is 
N N - l f l  

1-0 1-1 

N N-l+l  

8 ( r ,  8, t )  = C Z ~ ~ ~ ( t )  4 2  sinjn(r-r,) e(cos8), (3.3) 

where N is the truncation parameter. If N,, No represent an accurate solution at some 
Ra then a more accurate solution is obtained with N = max (N,., No+ 1). The N,, No 
solution contains (No+ 1)  N ,  coefficients, while the N solution has only i ( N +  1 )  ( N +  2) 
coefficients. With N,  x No, (3.1) contains approximately twice as many terms as (3.3). 
Thus for the same computer resources we obtain accurate solutions at higher Ra with 
diagonal truncation. For the equatorially symmetric solutions we take the trunca- 
tion parameter N even, with a total of (+N+ 1)2 spectral coefficients instead of the 
a(N+ 1 )  ( N + 2 )  coefficients needed to represent a general axisymmetric solution. 

The computational techniques for finding the steady states and testing for their 
instabilities all proceed in exactly the same manner as with full truncation. In 
particular, a Galerkin approach is used to derive the initial-value problem for 71k, 

0 < 1 < N;1<  k < N - l + l :  

N- l+ l  N N - n + i  N-m+i 

An important detail is the computer storage of the integrals L and N in (3.5) (which 
retain the same definition as in Zebib et al. 1980) arising from the radial inner 
products, since not all nonlinear interactions are needed in the diagonal truncation. 
We were able to devise a procedure in which only the necessary integrals are 
computed and stored. Thus, for the hemispherical solutions, computer storage of 
these quantities was about P, while the solutions with odd numbers of cells required 
about 3 P .  Complete details may be found in Goyal (1982). 
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Ra 
FIGURE 1. Variation of the Nusselt number Nu at the inner boundary with the Rayleigh number 
Ra for the 2-cellf motions for three values of the truncation parameter N. Accurate values of Nu 
are predicted with N = 30 up to Ra x 200000. 

4. Results and discussion 
We have found that there are 5 different axisymmetric steady convective motions 

in various ranges of Ru. We will refer to them according to the number of cells they 
contain. Comparison with previous full-mode truncation solutions (Zebib et ul. 1983) 
confirms the accuracy of the diagonal-mode representation used here. The 3-cell 
motion begins at Ru = 978.5 and ceases to exist at Ru x 3350. This is confirmed from 
computations with N u p  to 20 (i.e. with 231 coefficients). The equatorially symmetric 
solutions are produced with N between 20 and 30; spot checks were made with N = 34. 
The 4-cell motions reported in Zebib et ul. (1983) are extended here to the values of 
Ru where they cease to exist. The 4-cell+ motion (i.e. with plumes at the poles) exists 
up to Ru x 14500. The 4-cell- solution with downwelling at the poles exists up to 
Ru x 45000. These 4-cell solutions are unstable to general axisymmetric as well as 
three-dimensional disturbances. 

We first computed a 2-cell solution for Ru x 1OOOOO. This waa accomplished via 
a fully implicit time-marching procedure. This solution, which is a 2-cell+ motion, 
also exists for larger values of Ru up to at least lo6 ! Figure 1 shows the Nusselt number 
(at the inner surface) variation with Ru for N = 26, 28 and 30. The Nusselt number 
is accurate to within 1 % up to Ru x 200000 and to within 8.5 yo up to Ru = lo6. We 
also computed the 2-celP solutions at values of Ru < lo5 and, as expected, these 
motions do not exist for Ru in a range between a value slightly greater than Ru,, 
(1 = 4) and about 2380. Since the 4-cell* motions began as 2-cellr convection at 
Ru x 1095.7 (Zebib et ul. 1983), we also looked for a 2-cell- motion at sufficiently large 
Ru. The initial condition for the time-marching code was an artificial 2-cell motion 
with polar downwelling. We did compute the 2-cell- motion for 3630 4 Ru < 135000. 
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FIGURE 2. Same tm figure 1, but for the 2-cell- solutions. Accurate Nusselt numbers are 
predicted at values of Ra less than about 60000 with N = 30. 
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FIGURE 3. The heat transfer exhibited by all possible axisymmetric steady motions aa a function 
of Ru. There is no 3-cell motion for Ra > 3350, no 2-cell- motion for Ra > 135000, no 4-cell+ motion 
for Ra > 14500, and no 4-cell- solutions for Ra > 45000. The 4 d l *  motions are secondary 
branches of a pair of 2-cell7 motions which regain stability at Ra about 2380 and 3630 respectively. 
The 2-cell+ motion is the only one of these axisymmetric solutions that exists at values of Ru > lo*. 
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Ra 

FIQURE 4. A sketch of the stable (solid) and unstable (dashed) hemispherical solutions in the 
(Nu, Ru)-plane. Both of the 2- and 4 - 4  motions represent transcritical bifurcations from the rest 
state. Secondary bifurcations, where the 2-cell* motions merge into 4-cellT convection through 
the appearance of polar cells (Zebib et al. 1983), occur at Ra > Ru,, ( I  = 4). 

Isotherms Streamlines 

FIQURE 5. Streamlines and isotherms of the 2-cell+ convection at Ra = 500oO (N = 30). The thermal 
boundary layer structure is noticeable even at this relatively low Ru. The temperature is 
dimensionless with respect to the full temperature difference across the shell. The stream function 
is dimensionless with respect to thermal diffusivity. 

The (Nu, Ru)-dependence of this solution is shown in figure 2 for N = 24, 26, 30; 
accurate Nu-values are obtained up to Ra = 6oOOO. 

Figure 3 summarizes the (Nu, Ra)-relationship in the Rayleigh-number range where 
the 5 axisymmetric solutions coexist. Because of scale the figure does not accurately 
reflect the solutions near Nu = 1. While the 3-cell solution transports more heat than 
any of the equatorially symmetric circulations, it  only exists in a very limited range 
of supercritical Ra. The hemispherically symmetric motions with upwelling at the 
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Ra 

FIQURE 6. Variation with Ru of the maximum growth rate of an axisymmetric disturbance cr,,, 
imposed on the 2-cell+ motion. Growth rate is dimensionless with respect to shell thickness and 
thermal diffusivity. umax is sensitive to the truncation parameter N .  Reliable determinations of 
om,, extend to Ru x 1OOOOO with N = 30. Instability of the 2-cell+ convection occurs for 
Ru 2 80000. The discontinuity of the slope in the cme N = 26 indicates transition from real to 
complex eigenvalues. 

equator transport more heat than their oppositely rotating counterparts. Two-cell 
convection is more vigorous than 4-cell convection when there is downwelling at the 
equator; the opposite is mostly true for upwelling at the equator. Convection with 
even numbers of cells extends to higher Ra when there is downwelling rather than 
upwelling at the equator. 

Figure 4 is a sketch of the lower left corner of figure 3 magnified to reveal more 
detail. Only even-cell solutions are included. Certain features of this bifurcation 
diagram, described below, are not constrained by the calculations. The solid and 
dashed portions of the curves indicate regimes of existence and nonexistence of the 
solutions. The points Ra,, (1 = 2 and 1 = 4) are transcritical bifurcation points from 
the conduction state. The 2- and 4-cell solutions with rising motion at the equator 
set in as subcritical motions; with downwelling at  the equator the circulations are 
supercritical. We are not absolutely certain that the Nusselt numbers decrease at the 
secondary bifurcation points involving transitions from two- to four-cell circulations 
(they could increase or suffer no discontinuities at transition). The points at which 
the 2-cell solutions regain their stability have been reasonably well defined by the 
computations. However, the corresponding points for the 4-cell solutions are not 
precisely located. An asymptotic analysis based on Rosenblat's (1979) method should 
lead to the analytic confirmation of figure 4 and the determination of the secondary 
bifurcation points and the points at  which the 4-cell solutions regain stability. 

The isotherms and streamlines of the 2-cell+ motion at Ra = 50000 are shown in 
figure 5.  The thermal boundary layer structure is evident even at this relatively 
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FIGURE 7. Same aa figure 6 but for the 2-cell- motion. N = 30 is needed for reliable stability 
estimates at Ra 25000. Instability is indicated for Ru b 12000. 

low value of Ra. Although a boundary-layer transformation indicates that, as 
Ra-t a, N u  = O(Ra!), a least-squares fit of the (Nu,Ra)-relationship (figure 1, 
N = 30) indicates that Nu = 0(Ra0***) for Ra 2 500000, while, for Ra >, 100000, 
Nu = O(Ra0.27). The thickening of the thermal boundary layer and plume at the pole 
is responsible for the decreased heat transfer at the inner surface. 

The stability of the 2-cell* solutions to general axisymmetric disturbances is 
indicated by the maximum of the growth rates gmax shown in figures 6 and 7. The 
growth rate is dimensionless with respect to thickness of the shell and the thermal 
diffusivity. For the purposes of predicting instability, the 2-cell+ solutions are reliable 
up to Ra x 1OOOOO with N = 30, while the 2-cell- motion is only reliable for 
Ra 5 25000. The 2-cell- flows are stable for Ra < 12000, whereas the 2-celP motions 
are stable up to Ra x 80000. Thus in the range 12000 < Ra < 80000 the only steady 
axisymmetric motion is an equatorially symmetric 2-cell flow with upwelling at the 
poles. Furthermore, for Ra 2 80000 there are no steady axisymmetric solutions. 
Analysis of the stability of the 2-cell+ circulation to three-dimensional disturbances 
reveals that this solution is indeed unstable, but only to perturbations with one 
azimuthal wave. Thus the form of convection at sufficiently high Ra (2 12000) is 
a fully three-dimensional flow with one azimuthal wave, two meridional cells, and 
upwelling at the poles. 
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